Having been pointed by Michael and Jouke to Liquid Metal Embrittlement, I see the Wikipedia article says loud and clear: The practical significance of liquid metal embrittlement is revealed by the observation that several steels experience ductility losses and cracking during hot-dip galvanizing or during subsequent fabrication.
As Tim was indulging in 'subsequent fabrication' of a galvanised plate, and brazing would melt the Zinc, he's ticked both of the necessary boxes. LME seems far more likely to me than Hydrogen Embrittlement, or any other cause.
I find it very difficult to imagine the effect one element will have on the physical properties of another when the two are in solution. The effects can be dramatic, for example distilled water is an electrical insulator, but the addition of a tiny amount Salt (Sodium Chloride) converts it into a conductor. The salt also alters the freezing and boiling points.
Likewise in metals, it seems small electronic changes can have beneficial or detrimental effects on the crystalline structure of solids. Carbon dissolved in Iron makes wonderful steels and useful Cast-Iron, and both can be improved by adding certain other elements like Manganese. However, other elements, such as Phosphorous and Sulphur, have highly negative effects on Iron.
In steel, I conceive sheets of Iron atoms where a tiny amount of Carbon fills gaps to reduce slipping, while too much Carbon lubricates them. Much too simplistic, because there is no physical contract: the forces involved are electronic interactions between atoms, altering the crystal structure of the metal. And the crystals are related to orbitals, taking us straight into quantum mechanical weirdness.
Soldering and Brazing exploit the good effect of creating a solution between two metals but as we know there are many ways joints can be ruined by contamination, oxides, poor choice of metals etc. Mistakes result in a flawed solution at the boundary.
LME seems to be due to another phenomenon: a crack propagated as a result of a liguid metal causing, or following, a local weakness. Due to leverage, the forces at the front of a crack can be enormous, even if the energy is only built in stress.
Dave